Improvements in Statistical Tropical Cyclone Forecast Models: A Year 2 Joint Hurricane Testbed Project Update

Mark DeMaria¹, Andrea Schumacher², John A. Knaff¹ and Renate Brummer²

¹NOAA/NESDIS, Fort Collins, CO ²CIRA, Colorado State University, Fort Collins, CO

NHC POCs: Lixion Avila, Robbie Berg, Chris Landsea

Interdepartmental Hurricane Conference
March 2013

Outline

- Project Tasks
 - 1. Extended range baseline models for track and intensity
 - Update of SHIPS/LGEM databases using new NCEP Climate Re-analysis
 - 3. Extending LGEM to 7 days
 - 4. SHIPS/LGEM specific for the Gulf of Mexico
- Progress so far
- Plans for 2013 season

1. New Baseline Forecast Models

- CLIPER and SHIFOR used as baseline for measuring track and intensity forecast skill
 - Errors provide estimate of forecast difficulty
- Input to linear regression equations
 - t = 0 h max wind, lat, lon, motion vector
 - t =-12h max wind, lat, lon, motion vector
 - Julian Day
- Output
 - 5-day forecast of lat, lon, max wind
- Decay-SHIFOR modifies intensity over land using CLIPER track and climatological decay rate

Trajectory Approach for Baseline Models (T-CLIPER)

$$dx/dt = u dy/dt = v (1)$$

- Estimate u,v from climatological motion vector fields
- Modify u,v at early times using t=0 motion vector
- Integrate (1) to desired time
- Similar approach for intensity using LGEM prediction equation with climatological input and T-CLIPER track
- Can be run to any forecast time until storm leaves model domain

Mean Storm Motion Fields from 1982-2011 Sample

T-CLIPER Tests

- Run in real time for most of 2012 season
- Re-runs for 2003-2011 using CARQ input
- Evaluation questions
 - How do average errors compare with OCD5 to 5 days?
 - Are annual average T-CLIPER errors correlated with NHC OFCL forecast errors?
 - What is the error behavior beyond 5 days?

Comparison of T-CLIPER and OCD5 10-year Average Errors

Correlation of Annual OCD5 and T-CLIPER Errors with OFCL

- Correlate OCD5 and OFCL annual errors for 10 year sample
- Repeat for T-CLIPER and OFCL
- Plot r² versus forecast interval
 - Plot r² as negative if r is negative

Variance of OFCL Errors Explained by OCD5 and T-CLIPER

10-Year Average T-CLIPER Errors

Track

Intensity

2. New Climate Reanalysis Fields

- New NCEP CFSR reanalysis fields obtained for 1979-2009
 - 0.5° lat/lon grib files
- Current SHIPS database
 - 1982-1999 Old NCEP reanalysis (2.5°)
 - 2000-2011 Operational GFS analyses (2°)
 - Inconsistency of RH and GFS vortex parameters
 - Old reanalysis not used in RII
 - Incomplete operational analyses used for 1989-1999
- 2000-2009 New, Old reanalysis and Operational analyses all available

Comparison of SHIPS Predictors for Different Analyses (2000-2009 Atlantic Sample)

RHLO = 850-700 hPa RH r=200 to 800 km

RHMD = 700-500 hPa RH r=200 to 800 km

GFS Vortex = 850 hPa tangential wind, r= 0 to 600 km

New SHIPS Database

- 1979-2009: New NCEP reanalysis (1°)
- 2010-2012: Operational GFS analysis (1°)
- 2013 SHIPS, LGEM and RII will all use the same database

3. Seven-Day LGEM

- Small sample size beyond 5 days makes fitting difficult
- Use new formulation of LGEM that fits entire forecast at once

Comparison of Fitting Methods

- LGEM Equation: dV/dt = κV β(V/V_{mpi})ⁿV
 β, n, V_{mpi} known or specified, need to find κ
- Old fitting method
 - Solve for κ : $\kappa = (1/V)dV/dt + \beta(V/V_{mpi})^{n}V$
 - Calculate k from best track
 - Fit best track
 k to predictors using least squares at each forecast period (6, 12 ..., 168 h)
- New fitting method
 - Define "cost" function $E = \frac{1}{2} \int (V_{fcst} V_{obs}) dt$
 - Find single set of k coefficients to minimize E
 - Requires adjoint of LGEM equation for fitting

Features of 7-Day LGEM

- Adjoint minimization instead of least squares fit to κ
 - Need to reduce predictor set for efficiency
- Replace simple empirical MPI function with theoretical Bister and Emanuel (2003) formula
 - Can incorporate SST cooling and entrainment in MPI formula
- Include persistence and GOES data through modification of κ at early times
 - Similar to T-CLIPER approach

4. Gulf of Mexico LGEM

- Rappaport et al. (2010) showed Gulf storms have consistent behavior
 - Gulf-specific SHIPS/LGEM may improve skill
- Gulf sample size very small, especially beyond 72 h
 - Use same formulation as 7-Day LGEM
 - Add new Gulf cases from 1979-1980

Plans for 2013 Hurricane Season

- Run standard 5-day SHIPS/LGEM
- Run parallel 7-day LGEM with new formulation
 - Includes Gulf-specific version
- Pre-season tests
 - Run on HFIP stream 1.5 retrospective cases
 - 2010-2012 sample
 - Only 2012 to 7 days since NHC track needed
 - Run for 2008-2009 cases with recon

Summary

- T-CLIPER provides new extended range forecast baseline
 - Errors within +8% to -5% of OCD5 to 5 days
 - Predicts OFCL intensity error similar to OCD5
 - Predicts OFCL track errors better than OCD5
- New NCEP reanalysis provides more consistent and higher resolution developmental sample
- 7-day and Gulf-specific LGEM to be run in parallel in 2013 season
- SHIPS/LGEM/RII being developed for W. Pacific, Indian Ocean and S. Hemisphere
- Acknowledgement: This NOAA Joint Hurricane Testbed project was funded by the US Weather Research Program in NOAA/OAR's Office of Weather 19 and Air Quality